94 research outputs found

    Erosion patterns in a sediment layer

    Full text link
    We report here on a laboratory-scale experiment which reproduces a rich variety of natural patterns with few control parameters. In particular, we focus on intriguing rhomboid structures often found on sandy shores and flats. We show that the standard views based on water surface waves come short to explain the phenomenon and we evidence a new mechanism based on a mud avalanche instability.Comment: 4 pages, 4 figures, to appear as Phys. Rev. E rapid com

    Granular flow down a rough inclined plane: transition between thin and thick piles

    Full text link
    The rheology of granular particles in an inclined plane geometry is studied using molecular dynamics simulations. The flow--no-flow boundary is determined for piles of varying heights over a range of inclination angles θ\theta. Three angles determine the phase diagram: θr\theta_{r}, the angle of repose, is the angle at which a flowing system comes to rest; θm\theta_{m}, the maximum angle of stability, is the inclination required to induce flow in a static system; and θmax\theta_{max} is the maximum angle for which stable, steady state flow is observed. In the stable flow region θr<θ<θmax\theta_{r}<\theta<\theta_{max}, three flow regimes can be distinguished that depend on how close θ\theta is to θr\theta_{r}: i) θ>>θr\theta>>\theta_{r}: Bagnold rheology, characterized by a mean particle velocity vxv_{x} in the direction of flow that scales as vxh3/2v_{x}\propto h^{3/2}, for a pile of height hh, ii) θθr\theta\gtrsim\theta_{r}: the slow flow regime, characterized by a linear velocity profile with depth, and iii) θθr\theta\approx\theta_{r}: avalanche flow characterized by a slow underlying creep motion combined with occasional free surface events and large energy fluctuations. We also probe the physics of the initiation and cessation of flow. The results are compared to several recent experimental studies on chute flows and suggest that differences between measured velocity profiles in these experiments may simply be a consequence of how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid

    Absorbing state phase transitions with quenched disorder

    Full text link
    Quenched disorder - in the sense of the Harris criterion - is generally a relevant perturbation at an absorbing state phase transition point. Here using a strong disorder renormalization group framework and effective numerical methods we study the properties of random fixed points for systems in the directed percolation universality class. For strong enough disorder the critical behavior is found to be controlled by a strong disorder fixed point, which is isomorph with the fixed point of random quantum Ising systems. In this fixed point dynamical correlations are logarithmically slow and the static critical exponents are conjecturedly exact for one-dimensional systems. The renormalization group scenario is confronted with numerical results on the random contact process in one and two dimensions and satisfactory agreement is found. For weaker disorder the numerical results indicate static critical exponents which vary with the strength of disorder, whereas the dynamical correlations are compatible with two possible scenarios. Either they follow a power-law decay with a varying dynamical exponent, like in random quantum systems, or the dynamical correlations are logarithmically slow even for weak disorder. For models in the parity conserving universality class there is no strong disorder fixed point according to our renormalization group analysis.Comment: 17 pages, 8 figure

    Partially fluidized shear granular flows: Continuum theory and MD simulations

    Full text link
    The continuum theory of partially fluidized shear granular flows is tested and calibrated using two dimensional soft particle molecular dynamics simulations. The theory is based on the relaxational dynamics of the order parameter that describes the transition between static and flowing regimes of granular material. We define the order parameter as a fraction of static contacts among all contacts between particles. We also propose and verify by direct simulations the constitutive relation based on the splitting of the shear stress tensor into a``fluid part'' proportional to the strain rate tensor, and a remaining ``solid part''. The ratio of these two parts is a function of the order parameter. The rheology of the fluid component agrees well with the kinetic theory of granular fluids even in the dense regime. Based on the hysteretic bifurcation diagram for a thin shear granular layer obtained in simulations, we construct the ``free energy'' for the order parameter. The theory calibrated using numerical experiments with the thin granular layer is applied to the surface-driven stationary two dimensional granular flows in a thick granular layer under gravity.Comment: 20 pages, 19 figures, submitted to Phys. Rev.

    The song of the dunes as a self-synchronized instrument

    Full text link
    Since Marco Polo (1) it has been known that some sand dunes have the peculiar ability of emitting a loud sound with a well defined frequency, sometimes for several minutes. The origin of this sustained sound has remained mysterious, partly because of its rarity in nature (2). It has been recognized that the sound is not due to the air flow around the dunes but to the motion of an avalanche (3), and not to an acoustic excitation of the grains but to their relative motion (4-7). By comparing several singing dunes and two controlled experiments, one in the laboratory and one in the field, we here demonstrate that the frequency of the sound is the frequency of the relative motion of the sand grains. The sound is produced because some moving grains synchronize their motions. The existence of a velocity threshold in both experiments further shows that this synchronization comes from an acoustic resonance within the flowing layer: if the layer is large enough it creates a resonance cavity in which grains self-synchronize.Comment: minor changes, essentially more references

    Rheology of a confined granular material

    Full text link
    We study the rheology of a granular material slowly driven in a confined geometry. The motion is characterized by a steady sliding with a resistance force increasing with the driving velocity and the surrounding relative humidity. For lower driving velocities a transition to stick-slip motion occurs, exhibiting a blocking enhancement whith decreasing velocity. We propose a model to explain this behavior pointing out the leading role of friction properties between the grains and the container's boundary.Comment: 9 pages, 3 .eps figures, submitted to PR

    Continuum theory of partially fluidized granular flows

    Full text link
    A continuum theory of partially fluidized granular flows is developed. The theory is based on a combination of the equations for the flow velocity and shear stresses coupled with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this theory to several important granular problems: avalanche flow in deep and shallow inclined layers, rotating drums and shear granular flows between two plates. We carry out quantitative comparisons between the theory and experiment.Comment: 28 pages, 23 figures, submitted to Phys. Rev.

    A constitutive law for dense granular flows

    Full text link
    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.Comment: http://www.nature.com/nature/journal/v441/n7094/abs/nature04801.htm

    Scale invariance and universality of force networks in static granular matter

    Full text link
    Force networks form the skeleton of static granular matter. They are the key ingredient to mechanical properties, such as stability, elasticity and sound transmission, which are of utmost importance for civil engineering and industrial processing. Previous studies have focused on the global structure of external forces (the boundary condition), and on the probability distribution of individual contact forces. The disordered spatial structure of the force network, however, has remained elusive so far. Here we report evidence for scale invariance of clusters of particles that interact via relatively strong forces. We analyzed granular packings generated by molecular dynamics simulations mimicking real granular matter; despite the visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, and thus determine a universality class. Remarkably, the flat ensemble of force configurations--a simple generalization of equilibrium statistical mechanics--belongs to the same universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]
    corecore